If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+48t+80
We move all terms to the left:
0-(-16t^2+48t+80)=0
We add all the numbers together, and all the variables
-(-16t^2+48t+80)=0
We get rid of parentheses
16t^2-48t-80=0
a = 16; b = -48; c = -80;
Δ = b2-4ac
Δ = -482-4·16·(-80)
Δ = 7424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7424}=\sqrt{256*29}=\sqrt{256}*\sqrt{29}=16\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{29}}{2*16}=\frac{48-16\sqrt{29}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{29}}{2*16}=\frac{48+16\sqrt{29}}{32} $
| 2(5-x)=+5 | | -0.04+j=-0.6 | | 6x-x^2=7,2 | | z/2+14=17 | | 5.36x-0.3=0.24-0.64 | | 8x+16+6x-90=180 | | 9=t/4+6 | | 4n=1/2(-2n-12) | | -2=1/2(2n-12) | | 13−11r=-10r | | 9x+x+5x=30 | | -2x+8=5x | | -20+7x=6+5x | | 6+1=10x-17 | | x+33/4=4x+30-11x | | 7n=8.61 | | 7+t=13 | | 8x-15/3+3=2x | | 3(3x+5)=-5(4x-5) | | 16-7x=x*3 | | 21-5v=-4v+12 | | 36+8y=10y+4+6y+8 | | 68-2k=9k+13 | | -2x+2=(1/3)^x+1 | | 16v+15=185-v | | 18+2q=5q-18 | | 2p-2=5p-8 | | 11x+7=6x-19 | | -3u=-44-7u | | 3y−10−2y=10−y | | 7d+2=2d+12 | | 9-3x=x+20 |